

Introduction

Site Information

Decision variables

In Japan, the popular choice of infill in reinforced concrete moment-resisting framed buildings is lightly reinforced concrete walls. They are constructed monolithically with the frames. The 2011 Tohoku earthquake and 2016 Kumamoto earthquake have shown that even if there is minor or no damage to structural components, damage to non-structural walls can cause severe dysfunction, sometimes leading to demolition.

Resilience and functionality can be targeted through performance objectives that precede collapse by means of the non-prescriptive Performance-Based Earthquake Engineering (PBEE) framework.

> Ground motion characterization

Damage Measure

probabilities

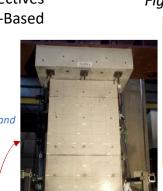


Fig: Damage to NS walls in past earthquakes

Component fragility denotes 'Damage analysis' and relates the probability of exceeding one or more damage states to probable demand calculated from structural analysis. There has not been any research on the component fragility of non-structural RC walls for limit states defined in the 2004 AIJ Guidelines. The present study fills this gap.

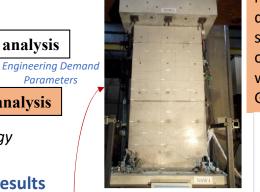


Fig: General Framework of PBEE methodology

Tahle:	ΔΠ	l imit	states	Definition	nn
Tuble.	\neg 13		JULES	Definition	,,,

Hazard analysis

Loss analysis

	Damage	state	Residual		
Limit state	Longitudinal reinforcement	Concrete	crack width (mm)	Required repair work	
Serviceability	Elastic	Nearly elastic	≤0.2	no repair	
Repairability I	Slightly yielded	In good condition	0.2-1	small repair work	
Repairability II	No buckling	Healthy core	1-2	extensive repair work	

Results

Parameters

Structural analysis

Damage analysis

The results are based on quasi-static cyclic loading test on six specimens

Table: Computed fragility parameters

	θ	β
Serviceability LS	0.08	0.35
Repairability I LS	0.37	0.36
Repairability II LS	0.97	0.38

θ: median demand value

β: dispersion

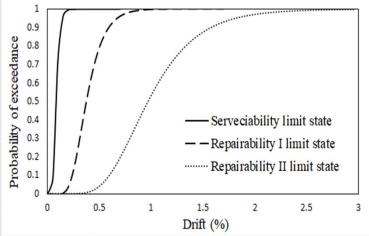


Fig: Fragility curve for non-structural walls

Conclusion

Drift-based fragility function provides information about the probability of exceeding (or experiencing) a specific limit state as a function of drift ratio experienced by the wall, which is crucial in PBEE.

Impact on the Society

Component fragility curves can be used in performance evaluation and economic loss assessment of building component which ultimately contributes to the risk state of the entire structure.