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1 Introduction 

Behavior of four specimens until their ultimate drift points 

were dominated by flexure mode. In part II, load-drift relations 

and the ultimate drift are simulated by a fiber based model.  

2 Model description 

The experimental results were simulated by a fiber based 

model. This model includes flexural deformation as shown in 

section 2.1 and shear deformation as shown in section 2.2. 

Ultimate point was assessed by ultimate confined concrete limit 

strain in section 3.3. 

2.1 Material properties 

Concrete and steel material model is presented in Fig. 1. The 

modified Kent and Park model provided a monotonic envelope 

curve for concrete in compression [1]. Confined concrete strength 

was estimated by Chang et al. [2]. Unloading and reloading paths 

followed Karsan and Jirsa [3] model. A nonlinear hysteretic steel 

model proposed by Menegotto-Pinto [4] was used. 

 

.(a) Concrete model 

 

.(b) Steel model 

Fig.1 Stress-strain relation for concrete and steel 

2.2 Flexural drift 

Flexural deformation was assumed to be a combination of 

elastic deformation and plastic deformation as shown in Fig. 2 (a) 

and Eq.(1). To calculate plastic deformation, plastic curvature 

was assumed to distribute constantly over a plastic hinge length, 

𝑙𝑝. Plastic hinge length was assumed to be 0.5 of wall length. 

 
.(a) Flexural 

deformation 

.(b) Idealized curvature 

distribution  

.(c) Elastic and plastic 

curvature distribution 

Fig.2 Flexural drift component 

𝑅𝑓 = 𝑅𝑓𝑒 + 𝑅𝑓𝑝 =
1

𝐻𝑐

(∆𝑓𝑒 + ∆𝑓𝑝) (1) 

.where ∆𝑓𝑒: flexural elastic deformation, ∆𝑓𝑝: flexural plastic deformation, 

𝐻𝑐: Height to contraflexure point. 

2.3 Shear drift 

Shear deformation for wall controlled by flexure was estimated 

as Eq.(2) which proposed by Beyer et al. [5]. The cracking angle, 

β, is the cracking angle in plastic zone above fan cracks region 

where cracks are approximately parallel as shown in Fig. 2 (a). 

𝑅𝑠

𝑅𝑓
= 1.5

𝜀𝑚𝑒𝑎𝑛

𝜑 tan𝛽

1

𝐻𝑐

 (2) 

.where 𝜀𝑚𝑒𝑎𝑛: axial strain at center of wall section, 𝜑: curvature, β: crack 

angle assumed to be 45 degrees, 𝐻𝑐: Height to contraflexure point. 

2.4 Ultimate drift 

Analytical ultimate point was determined when extreme 

concrete fiber reached ultimate confined concrete limit strain, 

𝜀𝑐𝑢 . The ultimate limit strain for confined concrete can be 

estimated with Eq.(3) [6]. To estimate ultimate drift capacity, a 

confined rebar strain at ultimate point, 𝜀𝑚 was assumed to be 2%. 

𝜀𝑐𝑢 = 0.004 + 1.4
𝜌𝑠𝑓𝑦ℎ𝜀𝑚

𝑓′𝑐𝑐
 (3) 

.where ρs : confined reinforcement volume to confined concrete volume 

ratio,𝑓𝑦ℎ:confined reinforcement yield strength, 𝜀𝑚: confined reinforcement 

strain at ultimate point, 𝑓𝑐𝑐
′ : confined concrete strength. 

3 Comparison of experimental and analytical load-drift 

relation and ultimate drift 

Figure 3 (a-d) in part I shows comparison of experimental and 

analytical load-drift relation and ultimate drift. The model well 

simulated the load-drift relation of four specimens. However, 

residual drifts were underestimated for RW20, RW20T and 

RW20C. Zhang [7] used a concrete model considering crack 

closure effect, and similar model should be considered for better 

estimation of residual drift of RC walls under cyclic loading.  

Load degradation after maximum load was well simulated in 

RW20, RW20C and RW40 until the ultimate drift. For RW20T, 

load degradation after maximum load in experiment was larger 

than that of the model. The reason might be buckling of 

longitudinal reinforcement, thinner cover concrete than other 

specimens and thinner wall thickness which induced damage to 

concrete around it. When longitudinal reinforcement buckles, 

compressive stress is redistributed to concrete around the 
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reinforcement, and these concrete tends to be damaged. Based on 

the experimental results in part I, stiffness of load degradation of 

RW20T was significant larger than RW20. 

The model captured small ultimate drift of RW40 due to high 

axial load. Analytical ultimate drift of RW20T and RW20C were 

larger than RW20 because of larger amount of confining 

reinforcement ratio. Figure 4 shows that the model estimated the 

ultimate drift capacities of four specimens within 20% error, 

although RW20C had 24 % error. From Fig. 7 part I, concrete at 

boundary region in RW20C was much confined than that of 

RW20, especially between R=-1.5 % to R=-2.0 %. Degradation 

path of modified Kent and Park model for concrete may not 

reflect stress degradation of confined concrete in RW20C. 

 

Fig.3 Comparison of experimental and analytical ultimate drift 

capacity 

4 Conclusions 

 The model with assumptions 1) plastic hinge length is 0.5 of 

wall length and 2) confined rebar strain of 2% was able to 

simulate lateral load-drift relation and ultimate point for four 

specimens. The ultimate drift capacity of RC wall with additional 

hoop and tie reinforcement was underestimated. For RC wall with 

100 mm thickness, the model overestimated load for post-peak 

portion. 
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