軸力を受ける鋼管コンクリート杭のせん断終局耐力に関する実験的研究 その1 研究背景および実験概要

SC 杭	耐震杭	せん断破壊
せん断終局耐力	軸力比	RC 基礎構造指針

1. はじめに

現在の建築基準法では大地震に対して杭体や杭頭接合 部の二次設計は義務付けられていない.しかしながら, 2011 年東北地方太平洋沖地震を始めとする地震被害では, 既製コンクリート杭が損傷し,建物が傾斜,沈下するこ とで,取り壊しや建て替えとなる事例が見られた¹⁾.被害 の中には,杭頭部でせん断破壊した事例も報告されてお り²⁾,杭部材の曲げ挙動のみならずせん断挙動を解明し, 杭部材の二次設計構築に向けたデータの蓄積が必要であ る.

2017年には日本建築学会から、「鉄筋コンクリート基礎 構造部材の耐震設計指針(案)・同解説 2017年」(以下, RC 基礎部材指針)³が刊行され,大地震に対する基礎構 造部材の構造性能評価に関する技術資料が纏められつつ ある.しかしながら,既製コンクリート杭の一種である SC 杭に関しては,曲げ終局耐力や変形性能に関するデー タは蓄積されつつあるものの⁴,せん断終局耐力に関する 知見やせん断変形が卓越する場合の実験データは皆無で ある.また,場所打ち鋼管コンクリート杭(以下,耐震 杭)に関しても,RC 基礎部材指針に記載のせん断終局耐 力式は,無軸力下での単調載荷実験結果に対して検証さ れたものの,大地震時の挙動を想定した高圧縮軸力下や 引張軸力下での検証は行われていない.

以上より,高圧縮軸力下や引張軸力作用下でのSC 杭に おいて,終局に至るまでのせん断挙動に関するデータの 収集・蓄積が不可欠である.そこで,本研究では,軸力 がせん断終局耐力に与える影響およびせん断変形が卓越 する場合の構造性能を明らかにすることを目的として, SC 杭及び耐震杭 6 体を製作し逆対称曲げせん断載荷実験 を行った(ただし,試験体 SCS2 は未実施のため本論文で は掲載しない.).

2. 試験体概要

試験体諸元を Table 1 に示す. 試験体全体図および杭詳 細図を Fig. 1, 2 に示す. 試験体は SC 杭 3 体, 耐震杭 3 体 の計 6 体を製作した. 全試験体で, 杭直径 ϕ 400mm であ り, 試験体区間高さHは400mm (試験体 SCS1 は600mm)

Experimental Study on Ultimate Shear Capacity of Steel Encased Concrete Piles

Part1: Research Background and Outline of Experiment

正会員	○小原	拓 *1	同	Naresh SUBEDI*1
同	阿部	紗也加 *1	同	Shreya THUSOO *1
同	河野	進 *1	同	平尾 一樹 **2
同	今井	康幸***3	同	David MUKAI ****4

の試験体である.スタブは鋼製であり,杭体と鋼製スタ ブ(以下,スタブ)の接合は、スタブに杭径より20mm程 度大きい直径を持つ円形のスペースを設け,そのスペー スに杭体を設置し,杭体端板と鋼製スタブの端板を高力 ボルトで固定した.さらに,杭体とスタブ間の隙間には 無収縮モルタルを充填した.

試験体に作用させる軸力は、引張軸力として軸力比-0.35 (SCS2) または-0.3 (TSS2),低圧縮軸力として軸力 比 0.1 (SCS1 および TSS1),高圧縮軸力として軸力比 0.5 (SCS3 および TSS3) を与えた.せん断スパン比は 0.5 (SCS2 のみ 0.75) としている.作用軸力とせん断スパン 比は、せん断終局耐力が曲げ終局耐力を下回るように設 定した.各耐力の計算値の詳細については、その2に示 す.

Fig. 2 杭体詳細図(Unit:mm)(左図,SC 杭 右図,耐震杭)

OBARA Taku, Naresh SUBEDI, ABE Sayaka, Shreya THUSOO, KONO Susumu, HIRAO Kazuki, IMAI Yasuyuki, David MUKAI

Specimen	直径 mm	試験体 高さ mm	杭厚み mm	軸力比 η ※2	杭種
SCS1 ^{**1}		600	85.8(鋼管厚 6) (コンクリート 厚 79.8)	0.09	
SCS2 (未実施)			_	-0.35	SC 杭
SCS3	400	0 400	70.9(鋼管厚 6) (コンクリート 厚 64.9)	0.50	
TCS1			l de	0.10	
TCS2		甲実 (鋼管厚 4.5)	-0.30	耐震杭	
TCS3			0.50		

Table 1 試験体諸元

※1 文献 5)に記載の試験体であり,詳細検討を本論文に追記. ※2 軸力比 η : N/N_{max}, N: Axial force in the test, N_{max}: A_cσ_B+A_sf_y, A_c: Cross section area of concrete, σ_B : Concrete compressive strength, A_s: Cross section area of steel, f_y: Steel yield strength. Positive value is compression and negative value is tension.

(a)					
Specimen	降伏強度 f _y MPa	引張強度 f _t MPa	ヤング係数 E _s GPa	降伏ひずみ ε _y %	
SCS1	428	537	201	0.414	
SCS2			_		
SCS3	428	537	201	0.414	
TCS1	427	567	189	0.426	
TCS2	435	584	217	0.400	
TCS3	435	584	217	0.400	
(b) コンクリート					

Table 2 材料の力学的特性 (a) 鋼管

名称	圧縮強度 _{のB} MPa	圧縮強度時 ひずみ ε _B %	弾性係数 Ec GPa	割裂引張強度 _{σt} MPa
SCS1	110.6	0.275	40.3	_
SCS2			_	
SCS3	108.8	0.261	49.8	_
TCS1	26.8	0.197	26.6	2.89
TCS2	23.7	0.165	26.6	2.64
TCS3	28.2	0.200	22.4	2.47

Table 2 に使用した材料の力学的特性を示す. SC 杭試験 体のコンクリート圧縮強度は 110MPa 程度, 耐震杭試験体 では, 25MPa 程度である. 鋼管は SC 杭, 耐震杭ともに降 伏強度は 400MPa~450MPa である.

3. 載荷装置概要

逆対称曲げ載荷装置図を Fig. 3 に示す. 本実験では, 2

*東京工業大学

- **一般社団法人 コンクリートパイル・ポール教会
- ***耐震杭協会
- ****ワイオミング大学 東京工業大学客員教授

本の 4000kN 鉛直ジャッキにより一定の軸力を導入し,か つ上下スタブの平行を保持するように制御した.制御し た層間変形角 R は上下スタブの相対水平変位を杭高さ (SCS2 は 600mm, その他は 400mm)で除した値とした. 載荷は正負交番繰り返し載荷とし,加力サイクル計画は R=±0.125%, ±0.25%, ±0.50%, ±0.75%を2回ずつ繰 り返した(その後のサイクルは,各試験体で耐力劣化が 確認できるまで繰り返し載荷を行った.).ただし,試験 体 SCS1 のみ負側が水平ジャッキ容量の限界に達したため, R=1.00%のサイクルより正側へ押し切った.

4. まとめ

基礎構造の構造性能評価のためのデータ収集を目的とした研究背景と実施した実験の概要を示した.その2,その3では SC 杭及び耐震杭の実験結果について報告する

謝辞

本研究の一部は、科学研究費基盤 A(田村修次および河野進)、東京工 業大学 SOFTech、フロンティア材料研究所全国共同利用、科学技術 創成研究院(WRHI)、の補助を受けて実施したものです.また、AIJ コンクリート杭の耐震性能 WG および COPITA 杭の変形性能評価 WG の委員各位には、大変貴重な意見を頂きました.学生が受給した文 部科学省国費奨学金についても、この場をお借りしまして感謝した します.

参考文献

- 金子治ほか:2011 年東日本大震災における建築物の杭基礎の被 害状況と要因分析,地盤工学会誌,vol.62, No.1, pp.16-19, 2014.
- 2) 関口徹:被害事例から見た杭体の耐震性能,建築技術, 2015.8.
- 3) 日本建築学会:鉄筋コンクリート基礎構造部材の耐震設計指針 (案)・同解説, 2017.3.
- 4) 国立研究開発法人 建築研究所:大地震後の継続使用性を確保す るためのコンクリート系杭基礎構造システムの構造性能評価に 関する研究,2019.10
- 5) 江川弥玖ほか:軸力を受けるSC杭のせん断耐力に関する実験的 研究 その1パイロット試験結果,日本建築学会大会学術講演梗 概集,2019.9

*Tokyo Institute of Technology

**Concrete Pile and Pole Industrial Technology Association

***Taishingui-kyokai

****University of Wyoming, Visiting Prof. of Tokyo Inst. of Tech.